

Connecting the energy of tomorrow

A decision support tool for best possible coating selection during trenchless pipe installations

Thierry Kerzerho

Contents

- 1. GRTgaz in brief
- 2. Purpose of trenchless techniques
- 3. Risks associated
- 4. Analyses of loads and stresses
- 5. Opti'Drilling tool
- 6. Conclusion

GRTgaz in brief

The longest high-pressure transmission network in Europe:

- 32 000 km of pipelines
- 26 compressor stations
- 9 interconnections with foreign networks

Figures (2016):

- 2916 employees
- Transported gas 463,5 TWh
- € 1,993 billion net sales
- € 0,6 billion investment

GRTgaz in brief New routes in France

Ð

GRTgaz conducts its development and modernisation programmes in close collaboration with all parties involved and endeavours to ensure the region receives as many of the economic and social benefits as possible.

Planning routes with the least possible impact and optimising local integration

• Purpose of trenchless techniques

GRTgaz feedback

- In the past, GRTgaz used a conservative method assuming that the more coating you apply, the more resistance you achieve.
- This method doesn't take in account stresses coming from drilling path and soil characteristics.
- Several failures observed onsite \rightarrow Loss of money

Risks associated

Type of failures

θ

• Failure at the interface due to shear stress while pulling

Risks associated

Type of failures

Θ

- Cracking due to high internal stresses due to:
 - o Internal residual stresses from the coating mill
 - Traction/compression stresses coming from the drilling path:
 Bending of the pipe and contacts with the hole walls
- Defects at field joint due to the geometry of the coating

Analyses of stresses

- Each step of the pipeline lifetime is evaluated:
 - Installation

Q

- Hydraulic test
- Operation
- For each step, all stresses involved are reported

Stress	Scenario			Commonts	
	Installation	Hydraulic test	Operating	Comments	
Traction	\checkmark	×	×	Due to pulling force	
Bending	✓	✓	✓	Due to the drilling path	
External pressure	\checkmark	✓	✓	Pressure due to fluid density	
Internal pressure	✓	✓	×	Hydrostatic pressure due to ballast	
Thermal expansion	×	×	\checkmark	Temperature variation	

Q

Loads and stresses

Tension	Type of loads	Key parameters
External pressure	Pressure between the soil and the pipe	Fluid density, ballast, diameter, wall thickness, length
Friction	Created by tension loads associated with compressive strength	Type of soil, Length, radius of curvature, diameter, compressive loads
Longitudinal traction/compression	Created by bending	Length, radius of curvature, diameter

Ð

Opti'Drilling tool

Opti'Drilling is a software developed by Wood to help users select the appropriate coating for Horizontal Directional Drilling (HDD) operations.

Opti'Drilling relies on **cross-database analysis** coupled with appropriate codes and standards commonly used by drilling operators. Opti'Drilling allows the user to capitalize on experience through an interactive database.

Outcomes and benefits:

- User-friendly interface, accessible to all
- Better understanding of coatings failure modes associated with HDD operations
- Simplified assessment of coating suppliers
- Reduced cost and time

GRTgaz Thierry KERZERHO | IPLOCA Novel Construction | October 24th, 2018

Pipeline and Buoyancy Control Parameters WO GRTgaz 1.a/ Pipeline Parameters Pipeline steel outside diameter mm MENU Pipeline steel wall thickness mm Specified minimum yield strength of steel ٠ MPa External coating thickness mm **Pipeline input:** PIPELINE Pipeline design pressure bar OD, Wall thickness, SMYS, Hydrostatic test pressure bar Safety coefficient etc. DRILLING °C Minimum operating temperature (buried) Ambient temperature during installation °C Young's modulus 210000 MPa Poisson's ratio 0.3 SOIL 1.b/ Buoyancy Control Parameters Buoyancy Force Buoyancy Force Apply buoyancy control? C Yes C No Possibility to add **buoyancy ANALYSIS** control parameters RESULTS Pipeline ballasted weight P

Opti'Drilling tool

Θ

Opti'Drilling tool Θ **Drilling Profile Parameters** WO(GRTgaz 2/ Drilling Parameters MENU β $\mathbf{\Lambda}$ hout PIPELINE Pulling direction L DRILLING Angle of entry deg α Angle of exit deg SOIL Angle of junction deq Entry height with respect to reference height hin m Exit height with respect to reference height hout m ANALYSIS Entry radius of curvature p1 m Exit radius of curvature ρ2 m Horizontal length of crossing L m Maximum depth of crossing with respect to reference height н RESULTS m P

Drilling profile input:

Angles of entry and exit, Entry and Exit radius of curvature, etc.

œ

Drilling Profile Parameters

WOO	JO .			GRIgaz
MENU	 - 3.a/ Geo-technical Paral Drag coefficient between pipe Friction coefficient between pip Density of drilling mud 	240 N/m2 0.2 ka/m3		
PIPELINE	- 3.b/ Soil type	Abrasivity Index	Friction coefficient	Grooving Risk Index
DRILLING	A Fine grained soils	0.5	coating 0.3	0.5
SOIL	B Weakly cemented granular soils	1	0.4	1
	Fine grained soils C with coarse/grinding elements	2	0.5	3
ANALYSIS	D Purely granular soils	2	0.3	1
	R Rocky soils	3	0.8	3
RESULTS	Manual input		Click	
	L			

Geo-technical input:

Angles of entry and exit,
 Entry and Exit radius of curvature, etc.

Soil type input:

 5 default soil classes from
 fine grained to rocky soils plus one manual input soil class

Coating Database

œ

- The user can test different types of coating: FBE, 3LPE, 3LPP, PU.
- Each calculation tests one coating thickness → Iterative Approach
- Possibility of creating new coating inputs with the relevant data
- Field joint coating are not tested → need more calculation..
- When sufficiently detailed REX is available, contractors processes for coating set up will be taken into account

Œ

Pulling loads and maximum stress

Pulling loads and maximum stress results:

Opti'Drilling calculates maximum pulling loads during installation and maximum

stress for the three following scenarios:

- Installation
- Hydrostatic test
- Operation

Ø

Pulling loads and maximum stress

Guidance for coating selection:

For each coating stored in the coating database, Opti'Drilling evaluates the risk associated

- to the four failure modes:
 - Shearing
 - Cracking
 - Abrasion
 - Grooving

Conclusion

- A user friendly software with two objectives:
 - Review of the drilling design:
 - Loads,
 - Drilling path.
 - Selection of the pipeline coating with the optimal thickness according to four parameters: Abrasion, Cracking, Grooving and Friction,
- Perspective:
 - Possibility to offer the service to other operators and contractors.
 - In the future, the aim is to take into account the quality of the set up processes and environment

Questions?

<u>thierry.kerzerho@grtgaz.com</u> +33 (0) 698 024 348

+

21