

Johan Van Wassenhove CEO Denys Global Leo Weixler

Executive Director Bauer Maschinen

We have a dream...

Underground construction

with a minimum impact on the surface.

View of construction work on the Metropolitan Railway near King's Cross, circa 1860

Schuhman – Josaphat (Brussels, 2008 – 2012)

Underground railroad connection

Minimal socio-economic impact

Installation from a 6 m by 8 m vertical shaft at the surface

Partly underneath historic buildings

Motivation

... to enable the construction of D-walls, where you never thought before

Underground ...

Create underground space for ...

Parking, logistic space, water storage, ...

... and in confined space

Under bridges,

in very tight spaces,

on top of dams, ...

Our Background

between the construction specialist $\square ENY=$

and the equipment specialist BAUER Maschinen GmbH

Combined experience

1984: first BAUER Trench cutter

37 years experience in trench cutter units

More than **350 units** operating worldwide

Many successful challenging projects

Up to 2.5 m wall thickness

Down to 250 m

Rock strength up to 200 MPa

2019: FalCon project - 250 m record

DENYS

 More than 60 years of experience in tunneling and foundations works

Schuhman – Josaphat (Brussels, 2008 – 2012)

Underground railroad connection

Minimal socio-economic impact

Installation from a 6 m by 8 m vertical shaft at the surface

Partly underneath historic buildings

Schuhman – Josaphat (Brussels, 2008 – 2012)

Underground railroad connection

Deep braced excavations

State of the art

Risk
analysis

Danger of falling persons and objects

Presence of harmful gases

Hazard of collapse of the trench

Long term health issues due to non-ergonomic work conditions

Deep braced excavations are applied by lack of alternative methods. Only possible above groundwater.

Tokyo Subway Station - Lowhead Cutter in 1991

Tokyo Subway Station

Construction of outer walls

Construction of the **upper floors**

Construction of inner walls from the lowest level

Yeleh Dam in Sichuan, China

The Cube System

The Cube System

Cutter

Cutter assembled

Technical Specifications	
Cutter height	3,600 mm
Trench length	2,400 mm
Trench width	640 mm – 1,000 mm
Steering flaps	8 pc
Hook load	20 t
Min. weight	12.8 t
Max. weight	14.3 t
Mud pump	127 mm (5")
Gearbox	BCF 5 (2 x 46 kNm)

2400

ca.<u>6</u>50

Cutter Cube

How it works

BAUER Cube System Test

BAUER Cube System Test

Test site in Aresing

Results

- Progress rates
 - 15-25 cm/min primaries
 - 1-5 cm/min for "rock embedment"
 - 42 m trench depth is the limit for HDS drums and winch
 - Time to connect cutter unit and pumping unit is about 15 min
 - Min. pre-excavation of 1,5 m
- Installation of reinforcement
 - Around 15 min per connection of segments
 - Connection height close to bottom of container
- Concreting
 - Around 3 hours (for 40 m³) using concrete pump
 - Installation of pipes by small lifting device around 1 h to 40 m

A cooperation between the construction specialist \square ENY \subseteq and the equipment specialist